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Abstract. We develop software tools for the solution of conservation laws us-
ing parallel adaptive discontinuous Galerkin methods. In particular, the Rensselaer
Partition Model (RPM) provides parallel mesh structures within an adaptive frame-
work to solve the Euler equations of compressible flow by a discontinuous Galerkin
method (LOCO). Results are presented for a Rayleigh-Taylor flow instability for
computations performed on 128 processors of an IBM SP computer. In addition
to managing the distributed data and maintaining a load balance, RPM provides
information about the parallel environment that can be used to tailor partitions to
a specific computational environment.

1 Introduction

By concentrating the computational effort in regions where solution resolu-
tion would otherwise be inadequate, adaptive finite element methods (FEMs)
provide a reliable, robust, and time- and space-efficient means of solving prob-
lems involving partial differential equations [4]. Portions of the finite element
mesh may be refined or coarsened (h-refinement), be moved to follow evolving
phenomena (r-refinement), or use methods of different order (p-refinement) to
enhance resolution and efficiency. In addition to adaptivity, parallel compu-
tation is essential for solving large three-dimensional problems in reasonable
times. The discontinuous Galerkin (DG) method [5,6] provides an effective
means of solving conservation laws on unstructured meshes in a parallel com-
puting environment (§2). The discontinuous basis can capture shock waves
and other discontinuities with accuracy, and the compact (nearest neighbor)
stencil minimizes interelement communication. This stencil, furthermore, re-
mains compact with high-order polynomial bases, which is (virtually) essen-
tial for unstructured mesh computation.

Reusable software libraries allow finite element problems to be solved
without concern for the details of the underlying mesh structures, adaptive



procedures, or parallelization. We are developing such libraries to support
parallel adaptive finite element computation [10,11,26]. The conventional
array-based data representations used for fixed-mesh computation are not
well suited for adaptivity by h- or p-refinement [1]. However, alternative
structures complicate the automatic (compiler) detection of parallelism. We
describe (§3) software to manage distributed mesh data and to provide infor-
mation about the computational environment by explicit parallelism achieved
by message passing using the Message Passing Interface (MPI) [19]. Parti-
tioning and dynamic load balancing algorithms distribute the computation
across the processors by a domain decomposition of the spatial (or space-
time) mesh.

The DG software is applied to a Rayleigh-Taylor flow instability (§5).
This computation represents a preliminary step in the study of thermonuclear
flashes on astrophysical bodies, such as neutron stars and white dwarves [18].
Two-dimensional studies [13,14] have shed light on the instability, but the
phenomenon is three-dimensional, and such computations are essential for
understanding. The problem is, however, quite complex, and the results pre-
sented here are only a first step in this direction.

2 The Discontinuous Galerkin Method

We consider three-dimensional conservation laws of the form

3
w(x,t) + Zfi(x,t,u)wi =0, x€f, t>0, (1a)

i=1
with initial conditions
u(x,0) =u’(x), x€NUIN, (1b)

and appropriate well-posed boundary conditions. For the Euler equations,
the vector u specifies the fluid’s density, momentum components, and en-
ergy. The subscripts ¢ and z;, ¢ = 1,2, 3, denote partial differentiation with
respect to time and the spatial coordinates. Finite difference schemes for (1),
such as the Total Variation Diminishing (TVD) [25,27] and Essentially Non-
Oscillatory (ENO) [24] methods, usually achieve high-order accuracy by us-
ing a computational stencil that enlarges with order. However, a wide stencil
makes the methods difficult to implement on unstructured meshes and lim-
its efficient implementation on parallel computers. Finite element methods
have stencils that involve only their neighboring elements regardless of the
method order. This allows them to model problems with complex geometries
and leads to efficient parallelization. We discretize (1) using a DG finite ele-
ment method [3,5,6] with a piecewise-continuous spatial basis of polynomials
relative to a tetrahedral element (2, j =1,2,...,J, of the mesh on (2. This
basis has a more compact stencil than customary finite element approxima-
tions and involves communication only across element faces.



The numerical approximation U of u is discontinuous on 0f2;; thus, the
flux f(u) required by the DG method is ambiguous there. It is customarily
specified by a “numerical flux” function h(U;“, U]_) that depends on the so-

lution states UT and U7 on the interior and exterior, respectively, of 012;.
Several numerical flux functions are possible [6,24]. Here, we use the method
of Colella and Woodward [7,8] to compute an approximate solution to the
Riemann problem at 0f2;. This method is based on a Newton’s method al-
gorithm of Van Leer [28] but makes the simplifying assumption that wave
speeds are the same for both shocks and rarefactions. For efficiency, condi-
tions within rarefactions are computed by linear interpolation to avoid the
evaluation of a rational power. Once the ambiguity on 02; has been resolved,
the flux may easily be computed. Because of a required iteration, the Colella
and Woodward flux is 2-3 times more expensive to evaluate than Van Leer’s
flux vector splitting [9,17,29], but it offers much greater resolution at contact
discontinuities.

Computations with polynomial degrees p > 0 require flux or solution
limiting to preserve a monotonic behavior near discontinuities. Biswas et
al. [3] describe an adaptive solution limiting that avoids “flattening” the
solution near smooth extrema and maintains the expected O(hP*1), h =
maxi <;<s diam({2;), L' convergence rate when solutions are smooth [3,6].
The results in §6 use a piecewise-constant (p = 0) basis with explicit Euler
integration in time; hence, limiting is unnecessary.

3 Rensselaer Partition Model

The Rensselaer Partition Model (RPM) [26] provides distributed mesh data
structures and information about the parallel computational environment in
which a program is executing. The basic mesh data structures in RPM are
provided by the SCOREC Mesh Database (MDB) [1]; however, many of the
ideas may be applied to other systems. MDB includes operators to query
and update a mesh data structure consisting of a full mesh entity hierarchy:
three-dimensional regions, and their bounding faces, edges, and vertices, with
bidirectional links between mesh entities of consecutive order. Regions serve
as finite elements in three dimensions, while faces are finite elements in two
dimensions or interface elements in three dimensions. The full entity hierarchy
allows efficient mesh modification during h-refinement [22] and facilitates p-
refinement [21] by allowing attachment of degrees of freedom to the mesh
entities and by providing necessary geometric information. Mesh entities have
an explicit geometric classification relative to a geometric (CAD) model of
the problem domain. This allows the mesh to remain correct with respect
to the geometry during h- or p-refinement. Mesh entities are stored with the
geometry, so inverse classification information (retrieval of all mesh entities
classified on a given model entity) is readily available. This is useful, for
example, when applying a boundary condition on a model face. Rather than



visiting all faces in the mesh and querying each to check whether it is on the
desired boundary, a list of the needed entities is traversed directly.

Each entity in a distributed finite element mesh is uniquely assigned to a
partition. Each partition is assigned to a specific process, with the possibility
that multiple partitions may be assigned to a single process. “Process” in this
context refers to an address space. The model is hierarchical, with partitions
assigned to a process model and processes assigned to a machine model.

The machine model represents the computational environment: the pro-
cessing nodes and their network interconnections. The process model maps
processes to the computer and maps interprocess communication to intercom-
puter networks or, perhaps, to a shared-memory interface. Partitions know
the mesh entities that they contain, and mesh entities know their partition
assignments (partition model classifications).

rocess 1
Process 0
(a) Process 3
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Memory Memory
b Y/
( ) Process 2 Machine 1
(c)

Fig. 1. A sample two-dimensional mesh (a), target parallel environment in which
the mesh is to be partitioned (b), and partitioning of the mesh and assignment to
processes and machines for the parallel environment (c).

In Figure 1, we see a sample two-dimensional mesh (a) and a target par-
allel environment consisting of two 2-way SMP workstations connected by a
network (b). Figure 1(c) shows a partitioning of this mesh and the assignment
of those partitions to the processes and machines of the target environment.
Six partitions are created and assigned to four processes, since four processors
are available. Two processes are assigned two partitions, while the other two



are assigned only a single partition. The four processes are further assigned
to the available machines, two to each.

Mesh entities are replicated only when on a partition boundary that is
also a process boundary. Figure 2 shows two-dimensional examples of mesh
faces that share a common edge across a partition boundary. The shared
mesh edge is classified on the partition boundary in each case. On the left,
the partition boundary is local to the process, so the mesh entity need not
be replicated and is stored only with the partition boundary mesh. On the
right, the partition boundary is also on the process boundary. This partition
boundary is replicated in each process, so any mesh entity classified on this
boundary must also be replicated.

- |- -
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Fig. 2. Partition classification of mesh entities at a same-process partition (left)
and at a process-boundary partition (right).

4 Adaptive Methods

Adaptive spatial h-refinement [20,23] is edge based, using error indicators to
guide enrichment. An element may be subdivided isotropically or anisotrop-
ically, according to predefined templates, depending on the number of its
edges selected for refinement. Coarsening is performed when a convex poly-
hedron of elements request it. A central vertex is identified, the interior edges
of the polyhedron are removed, and the polyhedron is remeshed to form
fewer elements. Both refinement and coarsening are performed on distributed
meshes. During refinement, interprocessor communication is required to up-
date shared vertices, edges, and faces; however, element migration is not
necessary. Coarsening requires that the entire polyhedron of elements lie on
the same processor, so element migration may be required if the mesh near
an interprocessor boundary is marked for coarsening.

With a wide range of element sizes, it is advantageous to use a local
refinement method (LRM) [12,16] where spatially dependent time steps are
based upon the Courant stability condition. In a given time period, a small



number of large time steps will be taken on large elements, while the opposite
will occur on small elements.
The time step for (2; is determined from the Courant condition as

Atj = ar—], a<l, (2)

v

where r; is the radius of 2;’s inscribed sphere and v; is the maximum signal

speed on {2;. For the Euler equations, v; is the sum of the fluid speed and the

sound speed. The parameter « is introduced to maintain stability in areas of

mesh gradation. We empirically chose o = 0.65, but a more thorough analysis
is necessary.

Elements may take any stable time step; however, small differences in
element sizes and shapes lead to minor differences in time steps. These dif-
ferences, in turn, lead to time stepping many isolated elements, which causes
additional flux evaluations and interpolations. Efficiency can, thus, be im-
proved by rounding time steps down to the next lower (fractional) power of
two. This time stepping also helps to organize the computation [15].

Temporal interpolation requires storage for solution data at the previous
and current times. Additional space may be required so that the solution
may be synchronized and interpolated to a common time for checkpointing
or outputting. The interval between synchronization times is referred to as
a magor step. Each major step is composed of several smaller steps, each of
which performs a single time step on elements that have the necessary data
from their neighbors.

5 Rayleigh-Taylor Flow

The resulting software package implementing the parallel adaptive DG solu-
tion of the compressible Euler Equations is called LOCO. It has been built
using the parallel structures and dynamic load balancing algorithms within
RPM.

In collaboration with scientists at the University of Chicago and Argonne
National Laboratory, we are working toward complete simulations of ther-
monuclear flashes on astrophysical bodies such as neutron stars and white
dwarves. One crucial aspect of these simulations is the correct modeling of the
flame front as it leaves the surface of a compact star in a deflagration stage.
Because the relatively dense nuclear fuel lies above the less-dense nuclear
ash, the front is subject to Rayleigh-Taylor instabilities. These dramatically
alter the shape and area of the burn region and, consequently, the duration
and strength of the nuclear flash. Large problems sizes are necessary to ac-
curately model this phenomenon because fine-scale features can dramatically
affect the large-scale features.

As a preliminary step, we solve a Rayleigh-Taylor instability problem in a
rectangular parallelepiped (z,y € [0,0.25],z € [0, 1]) containing an ideal gas



with v = 5/3. Initially, the gas in the top half of the domain has density p = 2
and that in the bottom half has p = 1; thus, the Atwood Number is 1/3. The
interface between the two regions is sharp. Pressure is unity at the top of
the domain and increases toward the bottom with hydrostatic gradient pg,
where g = 1 is the acceleration of gravity acting in the z direction. Far-field
conditions are applied on the sides, and the pressure is prescribed at the top
and bottom to maintain the hydrostatic equilibrium. An initial single-mode
sinusoidal velocity perturbation [30] is

V., = —€, cos 8w cos 8wy sin” 7z,
Vi = €gy sin 8w cos 8wy cos mz sin” 7z,

Vy = €4y cos 8Tz sin 87y coswzsin” ! wz,
where

€. = Mo\/7/2, €zy = —€.7/16.

The velocity perturbation has magnitude My = 0.05 and “tapers off” from
the interface with a factor of 7 = 6. The planar cross terms V,, and V,, are used
for consistency with other software and are of importance with incompressible
flows.

6 Computational Results

The Rayleigh-Taylor problem was solved on 128 processors (32 4-way SMP
nodes) of an IBM SP computer. Error indicator and refinement tolerances
were chosen to detect the interface between the high- and low-density regions,
and refined to a given edge length in that region. The initial mesh consisted
of 234,421 regions. At t = 0.28, the mesh has been adaptively refined to
5,116,334 regions. Octree partitioning with a Morton traversal (OCTPART)
and interprocessor boundary smoothing [11] was used to rebalance the com-
putational load after each adaptive enrichment. Details regarding the parallel
efficiency of OCTPART and other tools used in this computation are reported
elsewhere [12,11].

Figure 3 shows the fluid density at t = 0.28 with (left) and without (right)
mesh projections on a plane through the center of the domain. The instability
is beginning; however, additional computation is necessary to see the complex
flow that develops. The adaptive process has clearly concentrated the mesh in
the interface zone. The interface is much more sharply defined than previous
simulations, which employed a van Leer flux vector splitting rather than the
Colella and Woodward fluxes.
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Fig. 3. Densities at ¢ = 0.28 for a Rayleigh-Taylor flow projected on a plane through
the center of the domain. Densities range from 1 (blue) to 2 (red). The projection
on the upper left includes the mesh. Arrows shown on the cut plane at the upper
right indicate velocity. The projection at the bottom is a closer view of the interface
zone.

7 Discussion

The Rayleigh-Taylor problem is a complex and severe test of an adaptive so-
lution procedure. Additional computations are ongoing. With meshes rang-



ing into millions of regions, we need a hierarchical visualization system to
examine the results. Such a system is under development using an octree
decomposition of the spatial domain.

A higher-order basis would reduce the spurious diffusion of the piecewise-
constant basis used here. This has been developed for two-dimensional flows [3]
and is being incorporated into the three-dimensional software. As noted,
higher-order requires limiting and the adaptive procedure of Biswas et al. [3]
is being extended to unstructured meshes for this purpose. Estimates of dis-
cretization errors will be needed both to evaluate accuracy and to guide
adaptive enrichment. Possibilities for these include use of superconvergence
at Radau points [3] (although extending this idea to unstructured meshes
presents a challenge) and the linear-problem estimates of Bey et al. [2]. Adap-
tive p- and hp-refinement procedures will be possible once these developments
have been completed.

RPM is capable of handling the heterogeneities introduced by p-refinement.
All of the load balancing procedures include capabilities to weight mesh en-
tities. As noted, weighting due to the LRM was included here. While proce-
dures to handle communications hierarchies are in place (§3), these have to
be examined more closely and extended to account for memory hierarchies
(cache utilization).
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